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‘Often people who have spent their lives living in one
culture see only regional and individual differences and
therefore conclude, “My national culture does not have a
clear character.” " - Erin Meyer, The Culture Map




Large Language Models &

Challenges Cultural Alignment

LLM's High

Proficiency, but
Cultural Oversight:

Western Bias:

LLMs excel in
understanding and
generating text, but
often fail to consider
the diverse cultural
backgrounds of their

users.

Al systems primarily
reflect Western
societal values due to
their reliance on
Western-centric data
and development
origins [1].

Cultural Alignment

in LLMs:

Aligning LLMs with the
values, beliefs, and
norms of its user

Consequences of

Cultural
Misalignment:

Cultural misalignment
can lead to
misunderstandings
and exacerbate
cultural tensions.



Quantifying Cultural Alignment in LLMs

Objectives Contribution

1. Examine correlations between language
maodels and embedded cultural values.

2. Quantify and explain cultural alignment in
LLMSs.

3. Understand the effects of language-
specific fine-tuning on cultural responses.

Provides a method to assess and explain LLMs'

cultural alignment, highlighting significant
differences and potential areas for
improvement,




Methodology

2- Prompting Methods:

1-Survey
Framework Feeds questions sequentially into LLMs using five seeds, averaging results over each question.
Utilizes Hofstede's 2- Country 3- Hyperparameter 4- Response 5- Language-
VSM13 survey with Level Influence Consistency Specific Tuning
30 questions (24
cultural, 6 . \||{ PromptLLMs to { Study impact of ) ( Compare cultural
' graphic) for AscLM diec respond as temperature and A== value between
demographic) for e randls perature an reliability in LLM o N
LLM assessment _ X representatives top-p settings on LLMs tuned in
. assuming any _ - _ . responses across c - .
> from specific LLMs' cultural _ _ English and
specific persona. _ o e various prompts. i
\ /[|\_ countries. alignment.  J|/\ JII\ Chinese.
- - e - - o

4- Evaluation Metrics
Kendall Tau correlation to assess 3-LLM
alignment between LLM-generated h
rankings and VSM13 benchmarks
®
Hofstede's Cultural AR
Dimension 5



Summary of Experimental Results

Model Comparison

W

« GPT-4>GPT-3.5
 GPT-4 adapts well

Hyperparameter

aﬁ

Temp & Top-p significant influence
Lower temperature with high top-p or

moderate settings improve alignment.

Country Comparison

GPT-4 adapts well
GPT-4 better MAS dimension without persona

adaptation
Llama 2 and GPT-3.5 perform poorly

Language Correlation

English LLama-2 model is culturally neutral.

Chinese LLama-2 model exhibits positive cultural bias.
Disparity in performance between English and
Chinese LLama-2 models, both underperforming.
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Conclusion

Methodology Performance Insights Red-Teaming Effects
E O} ")
' —
W —
v —
Framework to GPT-4 shows varied cultural Suggestion of red-teaming impact
evaluate LLMs' performance: Poor in the U.S., on cultural sensitivity [2]; less red-
cultural alignment better in China, problematic in teaming may have enhanced non-
Arab countries. English performance.

', Ethical and
@ Economic Impacts
m [|[||] Cultural misalignment risks \
ethical dilemmas and

economic setbacks, affecting
global Al trust and adoption.

Call for Action

Culturally aligned Al using
Interdisciplinary collaboration,
appropriate data, and
advanced technigues for
global ethics and trust.
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