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LLM and Society: The Current Landscape

• General-purpose LLMs should be equitable across cultures
• Which are not

• Their performance vary across cultures

• Exhibit socio-demographic biases

• Biases might lead to cultural homogenization
• Forces users to conform to the dominant culture to get service [1]

• Erasure of underrepresented cultures in extreme cases

• What do we need?
• Robust cultural evaluation frameworks

References: 1. Agarwal, D., Naaman, M., & Vashistha, A. (2024). Ai suggestions homogenize 
writing toward western styles and diminish cultural nuances. arXiv preprint arXiv:2409.11360.



Why is Cultural Evaluation Hard?

• Culture lacks a formal definition [1]

• It arises due to distinctions in the “way of life” between groups [2]

• An “us versus them” feeling [3; 4]

• Culture is an individual (undocumented) and a social construct 
(documented) [5] Ex: Robotics enthusiasts from Dabolim, Navajo tribe

• Cultural evaluation frameworks must incorporate this dynamic 
essence of culture
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Issues with Current Evaluation Schemes

• Current methods mainly test for cultural knowledge [3; 4]

• Some test for perceived alignment along theoretical frameworks:
• Hofstede's cultural dimensions [1]
• World Values Survey [2]

• Limited to specific cultures

• We need something more:
• Model-level: A higher order objective to optimize
• System-level: Measuring their real-world utility across cultures

References: 
1. Hofstede, 2001. Culture's consequences: Comparing values, behaviors, institutions and organizations across nations. 
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3. Tanmay et.al., 2023. Probing the Moral Development of Large Language Models through Defining Issues Test.
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hofstede cultural dimensions.



What we Propose?

• Optimizing for Meta-cultural competency [1] instead of 
only cultural competency
• A higher order competency innate to humans
• Enables intercultural communication. Comprises:

• Variational awareness: self-awareness of cultural differences
• Explication & Negotiation Strategies: conversational 

strategies that aim to reduce misinterpretations in cross-
cultural settings

• Functional and behavioral testing instead of factual 
probing
• Measure the utility and suitability of LLM-based tools across 

cultures

References: 
1. Sharifian, 2013. Globalisation and developing metacultural competence in learning English as an International Language.



Culturally Yours (CY): LLMs as reading assistants

• CY [1] is an online reading assistant

• Preemptively highlights and explains 
culture-specific items (CSIs) that users 
might find difficult to understand due to 
their cultural background

• Uses culture as a prior- Country, age, 
genre preference, etc.

• Measure difference between model and 
human-identified CSIs as a measure of a 
model’s cultural awareness.

• This approach is free from test data 
leakage, unlike probing for facts.

References: 
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Culturally Yours (CY): LLMs as reading assistants

• Prolific study with 50 participants from India, Mexico, 
and the USA
• Highlight difficult to understand spans from reviews.
• Associate level of unfamiliarity
• Answer additional survey questions

• Measured:
• How much do people not understand?
• How much of the difficulty is due to culture? (GPT-4o as 

annotator)
• LLM as an agent:

• Identify CSIs that a person from a given culture will not 
understand

• Correlate agent responses with humans.
• Measure equitability: Differences in overlap of CSIs between 

agents and humans from the same culture.



Culturally Yours (CY): Prolific Study Questions

Different ways of capturing the 

factors that affect 
understandability

Different ways of capturing understandability



Study Findings

• All reviews had at least 1 difficult-to-
understand span
• 83% (50) had culturally difficult spans
• Implication: Cultural reading assistants 

might be beneficial.
• Inter-annotator agreements:

• Review-level: Intra-country agreement 
greater than inter, except USA.

• Span-level: Lack of consensus across all 
countries, denoting understandability is 
individual-specific. Intra > inter for CSIs

• Implications: 

• CSIs are a set of harder-to-understand 
construct.

• Good targets for priors for the cold-start 
problem.



GPT-4o Benchmarking

• 96/115 (83%) GPT-4o identified CSIs 
overlap with human-identified difficult 
spans

• 70/115 (60%) overlap with 116 user-
identified CSIs

• 26 (22%) GPT-4o CSIs not cultural per 
users
• Probably due to the GPT-4o post processing 

errors
• 50 participants do not capture all variations

• GPT-4o generalizes: Low distinction in 
CSIs between fiction & non-fiction 
groups

• Recall higher than precision; captures 
variety

• Implication: GPT-4o equitably low-
performing

Figure: Precision and recall of the overlap between user and GPT-4o-identified CSIs



What we Propose?

• Functional and behavioral testing instead of factual 
probing
• Measure the utility and suitability of LLM-based tools across 

cultures
• Optimizing for Meta-cultural competency [1] instead of 

only cultural competency
• A higher order competency innate to humans
• Enables intercultural communication. Comprises:

• Variational awareness: self-awareness of cultural differences
• Explication & Negotiation Strategies: conversational 

strategies that aim to reduce misinterpretations in cross-
cultural settings
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Optimize for Variational Awareness (VA)

• H(Which side does Kenya drive?) < H(Which side does Asian countries 
drive?) > H(Which side does South Asian countries drive?)

• Test model's directionality of entropy change across different cultural 
dimensions (proxies)

• Model can be factually correct but directionally incorrect
• Experiment with Llama-3.1-8B-Instruct on GeoMLAMA [1] dataset
• C = set of values of a demographic proxy Ex: countries
• D = set of values of a semantic domain. Ex: driving (left/right)

• Primary cultural knowledge: fk: 𝐶 → 𝐷 and fv: 𝑃 𝐶 → [0, log 𝐷 ]

References: 
1. Yin et.al., 2022. Geomlama: Geo-diverse commonsense probing on multilingual pre-trained language models.



Measuring Variational Awareness: Results

• Accuracy and VA not 
correlated

• VA least for Iran. Most 
for India and USA.

• Wide variation of VA 
across semantic 
domains

• Low VA in color, 
measurement, food, 
indicating strong bias 
to certain cultures



Few of Our Driving Questions

• How can AI/computational technology help in answering 
questions regarding the interaction between users and 
cultures?​

• How can knowledge of this interaction help us build better 
and more equitable models and AI systems?​

• How is cultural knowledge represented in Large Language 
Models?​

• Can LLMs acquire cultural knowledge on-the-fly as it interacts 
with users?​

• Can cultural knowledge be transferred across domains and 
regions?​
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